Copied to
clipboard

G = C52⋊D6order 300 = 22·3·52

The semidirect product of C52 and D6 acting faithfully

non-abelian, soluble, monomial, A-group

Aliases: C52⋊D6, C5⋊D5⋊S3, C52⋊S3⋊C2, C52⋊C6⋊C2, C52⋊C3⋊C22, SmallGroup(300,25)

Series: Derived Chief Lower central Upper central

C1C52C52⋊C3 — C52⋊D6
C1C52C52⋊C3C52⋊S3 — C52⋊D6
C52⋊C3 — C52⋊D6
C1

Generators and relations for C52⋊D6
 G = < a,b,c,d | a5=b5=c6=d2=1, ab=ba, cac-1=dad=a2b3, cbc-1=a-1b-1, dbd=a-1b3, dcd=c-1 >

15C2
15C2
25C2
25C3
3C5
3C5
75C22
25C6
25S3
25S3
3D5
3D5
15D5
15C10
15D5
15C10
25D6
15D10
15D10
3C5×D5
3C5×D5
3D52

Character table of C52⋊D6

 class 12A2B2C35A5B5C5D610A10B10C10D
 size 11515255066665030303030
ρ111111111111111    trivial
ρ211-1-111111-1-1-111    linear of order 2
ρ31-1-11111111-1-1-1-1    linear of order 2
ρ41-11-111111-111-1-1    linear of order 2
ρ5200-2-1222210000    orthogonal lifted from D6
ρ62002-12222-10000    orthogonal lifted from S3
ρ760200-3+5/21+51-5-3-5/20-1-5/2-1+5/200    orthogonal faithful
ρ860-200-3-5/21-51+5-3+5/201-5/21+5/200    orthogonal faithful
ρ9620001+5-3-5/2-3+5/21-5000-1+5/2-1-5/2    orthogonal faithful
ρ1060-200-3+5/21+51-5-3-5/201+5/21-5/200    orthogonal faithful
ρ116-20001-5-3+5/2-3-5/21+50001+5/21-5/2    orthogonal faithful
ρ1260200-3-5/21-51+5-3+5/20-1+5/2-1-5/200    orthogonal faithful
ρ13620001-5-3+5/2-3-5/21+5000-1-5/2-1+5/2    orthogonal faithful
ρ146-20001+5-3-5/2-3+5/21-50001-5/21+5/2    orthogonal faithful

Permutation representations of C52⋊D6
On 15 points - transitive group 15T18
Generators in S15
(1 6 12 15 9)(2 13 4 7 10)(3 8 14 11 5)
(2 4 10 13 7)(3 5 11 14 8)
(1 2 3)(4 5 6 7 8 9)(10 11 12 13 14 15)
(1 2)(4 9)(5 8)(6 7)(10 15)(11 14)(12 13)

G:=sub<Sym(15)| (1,6,12,15,9)(2,13,4,7,10)(3,8,14,11,5), (2,4,10,13,7)(3,5,11,14,8), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15), (1,2)(4,9)(5,8)(6,7)(10,15)(11,14)(12,13)>;

G:=Group( (1,6,12,15,9)(2,13,4,7,10)(3,8,14,11,5), (2,4,10,13,7)(3,5,11,14,8), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15), (1,2)(4,9)(5,8)(6,7)(10,15)(11,14)(12,13) );

G=PermutationGroup([[(1,6,12,15,9),(2,13,4,7,10),(3,8,14,11,5)], [(2,4,10,13,7),(3,5,11,14,8)], [(1,2,3),(4,5,6,7,8,9),(10,11,12,13,14,15)], [(1,2),(4,9),(5,8),(6,7),(10,15),(11,14),(12,13)]])

G:=TransitiveGroup(15,18);

On 25 points: primitive - transitive group 25T27
Generators in S25
(1 3 20 23 6)(2 19 13 17 7)(4 14 10 16 5)(8 12 22 15 21)(9 11 24 18 25)
(1 9 14 17 12)(2 15 20 24 16)(3 11 10 7 22)(4 13 8 6 25)(5 19 21 23 18)
(2 3 4 5 6 7)(8 9 10 11 12 13)(14 15 16 17 18 19)(20 21 22 23 24 25)
(2 3)(4 7)(5 6)(9 13)(10 12)(14 18)(15 17)(20 25)(21 24)(22 23)

G:=sub<Sym(25)| (1,3,20,23,6)(2,19,13,17,7)(4,14,10,16,5)(8,12,22,15,21)(9,11,24,18,25), (1,9,14,17,12)(2,15,20,24,16)(3,11,10,7,22)(4,13,8,6,25)(5,19,21,23,18), (2,3,4,5,6,7)(8,9,10,11,12,13)(14,15,16,17,18,19)(20,21,22,23,24,25), (2,3)(4,7)(5,6)(9,13)(10,12)(14,18)(15,17)(20,25)(21,24)(22,23)>;

G:=Group( (1,3,20,23,6)(2,19,13,17,7)(4,14,10,16,5)(8,12,22,15,21)(9,11,24,18,25), (1,9,14,17,12)(2,15,20,24,16)(3,11,10,7,22)(4,13,8,6,25)(5,19,21,23,18), (2,3,4,5,6,7)(8,9,10,11,12,13)(14,15,16,17,18,19)(20,21,22,23,24,25), (2,3)(4,7)(5,6)(9,13)(10,12)(14,18)(15,17)(20,25)(21,24)(22,23) );

G=PermutationGroup([[(1,3,20,23,6),(2,19,13,17,7),(4,14,10,16,5),(8,12,22,15,21),(9,11,24,18,25)], [(1,9,14,17,12),(2,15,20,24,16),(3,11,10,7,22),(4,13,8,6,25),(5,19,21,23,18)], [(2,3,4,5,6,7),(8,9,10,11,12,13),(14,15,16,17,18,19),(20,21,22,23,24,25)], [(2,3),(4,7),(5,6),(9,13),(10,12),(14,18),(15,17),(20,25),(21,24),(22,23)]])

G:=TransitiveGroup(25,27);

On 30 points - transitive group 30T66
Generators in S30
(2 9 26 15 23)(3 10 27 16 24)(5 20 18 29 12)(6 21 13 30 7)
(1 25 22 8 14)(2 15 9 23 26)(3 10 27 16 24)(4 17 11 19 28)(5 29 20 12 18)(6 21 13 30 7)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)
(1 3)(4 6)(7 11)(8 10)(13 17)(14 16)(19 21)(22 24)(25 27)(28 30)

G:=sub<Sym(30)| (2,9,26,15,23)(3,10,27,16,24)(5,20,18,29,12)(6,21,13,30,7), (1,25,22,8,14)(2,15,9,23,26)(3,10,27,16,24)(4,17,11,19,28)(5,29,20,12,18)(6,21,13,30,7), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,3)(4,6)(7,11)(8,10)(13,17)(14,16)(19,21)(22,24)(25,27)(28,30)>;

G:=Group( (2,9,26,15,23)(3,10,27,16,24)(5,20,18,29,12)(6,21,13,30,7), (1,25,22,8,14)(2,15,9,23,26)(3,10,27,16,24)(4,17,11,19,28)(5,29,20,12,18)(6,21,13,30,7), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,3)(4,6)(7,11)(8,10)(13,17)(14,16)(19,21)(22,24)(25,27)(28,30) );

G=PermutationGroup([[(2,9,26,15,23),(3,10,27,16,24),(5,20,18,29,12),(6,21,13,30,7)], [(1,25,22,8,14),(2,15,9,23,26),(3,10,27,16,24),(4,17,11,19,28),(5,29,20,12,18),(6,21,13,30,7)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30)], [(1,3),(4,6),(7,11),(8,10),(13,17),(14,16),(19,21),(22,24),(25,27),(28,30)]])

G:=TransitiveGroup(30,66);

On 30 points - transitive group 30T72
Generators in S30
(2 7 24 26 14)(3 8 19 27 15)(5 17 29 21 10)(6 18 30 22 11)
(1 23 13 12 25)(2 26 7 14 24)(3 8 19 27 15)(4 28 9 16 20)(5 21 17 10 29)(6 18 30 22 11)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)
(1 6)(2 5)(3 4)(7 17)(8 16)(9 15)(10 14)(11 13)(12 18)(19 28)(20 27)(21 26)(22 25)(23 30)(24 29)

G:=sub<Sym(30)| (2,7,24,26,14)(3,8,19,27,15)(5,17,29,21,10)(6,18,30,22,11), (1,23,13,12,25)(2,26,7,14,24)(3,8,19,27,15)(4,28,9,16,20)(5,21,17,10,29)(6,18,30,22,11), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,6)(2,5)(3,4)(7,17)(8,16)(9,15)(10,14)(11,13)(12,18)(19,28)(20,27)(21,26)(22,25)(23,30)(24,29)>;

G:=Group( (2,7,24,26,14)(3,8,19,27,15)(5,17,29,21,10)(6,18,30,22,11), (1,23,13,12,25)(2,26,7,14,24)(3,8,19,27,15)(4,28,9,16,20)(5,21,17,10,29)(6,18,30,22,11), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,6)(2,5)(3,4)(7,17)(8,16)(9,15)(10,14)(11,13)(12,18)(19,28)(20,27)(21,26)(22,25)(23,30)(24,29) );

G=PermutationGroup([[(2,7,24,26,14),(3,8,19,27,15),(5,17,29,21,10),(6,18,30,22,11)], [(1,23,13,12,25),(2,26,7,14,24),(3,8,19,27,15),(4,28,9,16,20),(5,21,17,10,29),(6,18,30,22,11)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30)], [(1,6),(2,5),(3,4),(7,17),(8,16),(9,15),(10,14),(11,13),(12,18),(19,28),(20,27),(21,26),(22,25),(23,30),(24,29)]])

G:=TransitiveGroup(30,72);

On 30 points - transitive group 30T80
Generators in S30
(2 16 24 21 13)(3 17 19 22 14)(4 7 28 25 10)(6 12 27 30 9)
(1 23 18 15 20)(2 21 16 13 24)(3 17 19 22 14)(4 7 28 25 10)(5 26 8 11 29)(6 30 12 9 27)
(1 2 3)(4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)
(1 4)(2 6)(3 5)(7 15)(8 14)(9 13)(10 18)(11 17)(12 16)(19 26)(20 25)(21 30)(22 29)(23 28)(24 27)

G:=sub<Sym(30)| (2,16,24,21,13)(3,17,19,22,14)(4,7,28,25,10)(6,12,27,30,9), (1,23,18,15,20)(2,21,16,13,24)(3,17,19,22,14)(4,7,28,25,10)(5,26,8,11,29)(6,30,12,9,27), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,4)(2,6)(3,5)(7,15)(8,14)(9,13)(10,18)(11,17)(12,16)(19,26)(20,25)(21,30)(22,29)(23,28)(24,27)>;

G:=Group( (2,16,24,21,13)(3,17,19,22,14)(4,7,28,25,10)(6,12,27,30,9), (1,23,18,15,20)(2,21,16,13,24)(3,17,19,22,14)(4,7,28,25,10)(5,26,8,11,29)(6,30,12,9,27), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,4)(2,6)(3,5)(7,15)(8,14)(9,13)(10,18)(11,17)(12,16)(19,26)(20,25)(21,30)(22,29)(23,28)(24,27) );

G=PermutationGroup([[(2,16,24,21,13),(3,17,19,22,14),(4,7,28,25,10),(6,12,27,30,9)], [(1,23,18,15,20),(2,21,16,13,24),(3,17,19,22,14),(4,7,28,25,10),(5,26,8,11,29),(6,30,12,9,27)], [(1,2,3),(4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30)], [(1,4),(2,6),(3,5),(7,15),(8,14),(9,13),(10,18),(11,17),(12,16),(19,26),(20,25),(21,30),(22,29),(23,28),(24,27)]])

G:=TransitiveGroup(30,80);

Polynomial with Galois group C52⋊D6 over ℚ
actionf(x)Disc(f)
15T18x15-15x13-15x12+55x11+149x10+150x9-165x8-740x7-1105x6-1153x5-875x4-460x3-160x2-25x+1-518·172·235·532·1812·416517412

Matrix representation of C52⋊D6 in GL6(𝔽31)

100000
010000
191301200
3013191900
3013001919
191001230
,
3010000
17130000
3000100
181301200
2913001919
181001230
,
191001130
3013001819
0000300
18100300
0010300
1911230300
,
0000301
191002912
0010300
0001300
0000300
1000300

G:=sub<GL(6,GF(31))| [1,0,19,30,30,19,0,1,1,13,13,1,0,0,30,19,0,0,0,0,12,19,0,0,0,0,0,0,19,12,0,0,0,0,19,30],[30,17,30,18,29,18,1,13,0,1,13,1,0,0,0,30,0,0,0,0,1,12,0,0,0,0,0,0,19,12,0,0,0,0,19,30],[19,30,0,18,0,19,1,13,0,1,0,1,0,0,0,0,1,12,0,0,0,0,0,30,11,18,30,30,30,30,30,19,0,0,0,0],[0,19,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,30,29,30,30,30,30,1,12,0,0,0,0] >;

C52⋊D6 in GAP, Magma, Sage, TeX

C_5^2\rtimes D_6
% in TeX

G:=Group("C5^2:D6");
// GroupNames label

G:=SmallGroup(300,25);
// by ID

G=gap.SmallGroup(300,25);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,5,122,67,963,793,1804,3609,464]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^6=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^2*b^3,c*b*c^-1=a^-1*b^-1,d*b*d=a^-1*b^3,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C52⋊D6 in TeX
Character table of C52⋊D6 in TeX

׿
×
𝔽